Extremely Low Loss Phonon-Trapping Cryogenic Acoustic Cavities for Future Physical Experiments
نویسندگان
چکیده
Low loss Bulk Acoustic Wave devices are considered from the point of view of the solid state approach as phonon-confining cavities. We demonstrate effective design of such acoustic cavities with phonon-trapping techniques exhibiting extremely high quality factors for trapped longitudinally-polarized phonons of various wavelengths. Quality factors of observed modes exceed 1 billion, with a maximum Q-factor of 8 billion and Q × f product of 1.6 · 10(18) at liquid helium temperatures. Such high sensitivities allow analysis of intrinsic material losses in resonant phonon systems. Various mechanisms of phonon losses are discussed and estimated.
منابع مشابه
Progress towards terahertz acoustic phonon generation in doping superlattices
Progress is described in experiments to generate coherent terahertz acoustic phonons in silicon doping superlattices by the resonant absorption of nanosecond-pulsed far-infrared laser radiation. Future experiments are proposed that would use the superlattice as a transducer in a terahertz cryogenic acoustic reflection microscope with sub-nanometer resolution.
متن کاملEffects of geometry on quantum fluctuations of phonon-trapping acoustic cavities
This work presents some peculiarities of the near quantum ground state behaviour of curved (phonon trapping) bulk acoustic wave (BAW) cavities when compared to a conventional mechanical resonator. The curved cavity system resolves the quandary of the conventional mechanical system where the Bose–Einstein distribution requires higher frequencies for lower quantum occupation factors contrary to t...
متن کاملMechanical losses in low loss materials studied by cryogenic resonant acoustic spectroscopy of bulk materials (CRA spectroscopy)
Mechanical losses of crystalline silicon and calcium fluoride have been analyzed in the temperature range from 5 to 300 K by our novel mechanical spectroscopy method, cryogenic resonant acoustic spectroscopy of bulk materials (CRA spectrocopy). The focus lies on the interpretation of the measured data according to phonon-phonon interactions and defect induced losses in consideration of the exci...
متن کاملCavity optomechanics with Si3N4 membranes at cryogenic temperatures
We describe a cryogenic cavity-optomechanical system that combines Si3N4 membranes with a mechanically rigid Fabry–Perot cavity. The extremely high products of quality factor and frequency of the membranes allow us to cool a MHz mechanical mode to a phonon occupation of n̄ < 10, starting at a bath temperature of 5K. We show that even at cold temperatures thermally occupied mechanical modes of th...
متن کاملTunable coupled surface acoustic cavities
Related Articles Extremely low-loss acoustic phonons in a quartz bulk acoustic wave resonator at millikelvin temperature Appl. Phys. Lett. 100, 243504 (2012) Extraction of second order piezoelectric parameters in bulk acoustic wave resonators Appl. Phys. Lett. 100, 232901 (2012) Acoustic resonator based on periodically poled transducers: Concept and analysis J. Appl. Phys. 111, 064106 (2012) Vi...
متن کامل